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Abstract—We consider a wireless downlink shared by a dy-
namic population of flows. The flows of random size (bits) arrive
at the base station at random times, and leave when they have
been completely transmitted. The transmission rate supported
by the wireless channel of each flow while the flow awaits
transmission varies randomly over time and is independent of
that of the other flows. The scheduling problem in this context is
to select a flow for transmission based on the current system state
(e.g., backlogs, wait times, and channel states of the contending
flows). It has recently been shown that for such a system, the well-
known (backlog-driven) MaxWeight scheduler is not throughput
optimal. That is to say, the MaxWeight scheduler will not stabilize
a given system even though it is possible to construct a stabilizing
scheduler using the various flow- and channel-related statistics.
However, in this paper, we show that the delay-driven MaxWeight
scheduler is, nevertheless, throughput optimal for such a system.
The delay-driven MaxWeight, like its backlog-driven version,
does not require any knowledge of the flow- or channel-related
statistics.

I. INTRODUCTION

The time-varying nature of wireless channels provides an
opportunity to schedule the flows/users when they see a
favorable channel states – this is referred to as opportunistic
scheduling [1]–[3]. In a dynamic system, i.e., one where
users’ data or even new users arrive into the system as a
random process, the opportunistic or channel-aware schedulers
may not be stable, i.e., keep the data/user queues bounded,
unless they are carefully designed, e.g., possibly using prior
knowledge of the arrival and channel processes [4], [5].

For systems with time-varying channels but a fixed number
of users whose data packets arrive as a stationary random
process, there are well-known queue- and channel- aware
schedulers that are provably throughput optimal in a variety
of network settings. A scheduler in this context is said to
be throughput optimal, if without the knowledge of arrivals
and channel statistics it is able to stabilize the system, if at
all possible under some other scheduler. Examples of such
schedulers are the Longest Connected Queue [6], MaxWeight
[7], Exponential rule [8], and Log rule [9]; see [5] for more
details. A typical application of these schedulers in, e.g.,
deciding downlink packet transmissions from a wireless base
station, would be to (try to) achieve low packet delays of the
order of few tens to few hundreds of milliseconds [10] [11],
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when there is a given fixed number of users/flows which might
correspond to real-time voice/video sessions etc.

However for best effort flows, the relevant performance
metrics are defined over longer time scales, i.e., the time
scales of flow-level dynamics, e.g., file transfer delays or web
browsing interactivity. Unlike a system where there is a fixed
number of users/flows and each flow generates a stationary
packet arrival process, in this setting the arrivals correspond
to new flows and users, i.e., files to be transferred associated
with different users, and thus the number of ongoing flows in
the system is dynamic. Each flow can be viewed as having
its own queue associated with the residual data that needs to
be transmitted in order to successfully transfer a file or web
page. In this context, [5] recently showed that the queue-driven
MaxWeight scheduler is not throughput optimal1.

In this paper, we show that the delay-driven MaxWeight still
is throughput optimal in the dynamic flow setting. The critical
observation which explains why the queue-driven version is
not throughput optimal but the delay-driven version is, is
as follows. In the setting where there is a fixed number of
flows, a linear relation can be established between the head-
of-line packet delay and the queue length of a flow (Little’s
law) as either one gets large. By contrast, in the setting with
dynamic number of flows, while the head-of-line delay of
an un-served flow will continue to increase, its queue length
will not due to the finite size of flows. So, in the former
setting, the queue-driven and the delay-driven versions of
MaxWeight are equivalent in some sense, whereas, in the latter,
the queue-driven version may perpetually fail to exploit good
channel states of small queues (i.e. files with few residual
bits) irrespective of how long these small files wait while
the bigger newer files may get scheduled (because of their
longer queue lengths) even when their channels are poor; see
excellent illustrative examples in [5].

II. SYSTEM MODEL

Let random A(t) ∈ Z+ denote the number of files arriv-
ing in time slot [t, t + 1), these files will not be available
for service until the next time slot. We assume A(·) are
i.i.d. with finite mean λ ≡ EA(0). For 0 < i ≤ A(t), let
Bi(t) denote the file size in bits of the ith arriving file.

1Queue-driven Exponential rule and Log rule can similarly be shown to be
not throughput optimal in the dynamic flow setting.



We assume that Bi(t) are i.i.d. (across both t and i), are
bounded, and have mean β ≡ EB1(0). We will use bold face,
e.g. (A(t), t = 0, 1, · · · ), to denote the random process and
plain font, e.g. (A(t), t = 0, 1, . . .), to denote a realization
of the process. Also, we will make a distinction between
“increasing” and “strictly increasing” and between “positive”
and “strictly positive” etc.

Let Q(t) ∈ Z+ denote the number of files present in the
system at the end of time slot [t− 1, t). Then in the time slot
[t, t+1), at most one of the Q(t) files present in the system can
be scheduled to receive service. For each file 0 < i ≤ Q(t)
present in the system at the end of time slot [t− 1, t), let
• [Ti(t),Ti(t) + 1) denote the time slot in which the
ith file arrived. We index the files in order of
their arrival time, i.e., T1(t) ≤ T2(t) ≤ · · · ≤ TQ(t)(t).
Let T (t) ≡ (Ti(t), 1 ≤ i ≤ Q(t)) and W (t) ≡
(Wi(t), 1 ≤ i ≤ Q(t)), where Wi(t) ≡ t− Ti(t) > 0
denotes the current wait time of the ith file. Also, let
W (t) ≡ 0 if Q(t) = 0.

• random Ri(t) denote the maximum number of bits that
can be served/transmitted from file i, if it is scheduled
in time slot [t, t + 1). We will sometimes refer to
Ri(t) as the state of the ith files channel. We assume
that Ri(t) lies in a finite set {0, 1, · · · , rmax} and is
i.i.d. (across both t and i). Also, let p0 ≡ P (R1(0) > 0)
and p ≡ P (R1(0) = rmax) > 0.

• Li(t) > 0 denote the number of bits left in the
ith file at the end of slot [t − 1, t), or, equiva-
lently, the number of bits available for transmission
in time slot [t, t + 1). A file leaves the system
once all its bits have been served/transmitted. Also let
L(t) ≡ (Li(t), 1 ≤ i ≤ Q(t)).

See Fig. 1 for a graphical illustration of the system.
Let γ ≡ E

⌈
B1(0)
rmax

⌉
and ρ ≡ λγ, i.e., the average amount

of work (in number of slots) per slot that is entering the
system if the files could always be served at rmax bits/slot.
We assume that ε0 ≡ 1−ρ > 0 which is a sufficient condition
for stabilizablility [5].

Remark 1: We have assumed that file size and channel state
are i.i.d. across files, however, consider the following general-
ization. Suppose there are a fixed number K of classes of files,
where the class determines the distribution of the arrival and
the file size processes, as well as the distribution of the channel
seen by the file. Then for each class k ∈ {1, 2, · · · ,K},
suppose a file in the kth class sees an i.i.d. channel that has
the same distribution as Rk

1(0). So the distribution of channel
state may differ across classes (as indicated by the superscript
k), however, we restrict that for all k, P(Rk

1(0) = rmax) > 0
and P(Rk

1(0) > rmax) = 0. That is, the highest possible rate
supported by the channel of any file of any class is rmax. Using
this rmax, let λk, βk, γk and ρk respectively denote the mean
arrival rate, file size, work load per file, and total work load
associated with the kth class. Then, the results presented in
this paper are applicable, without modification, to this more

general multi-class system model, by appropriately defining
λ, β, γ, ρ and p as follows:

λ =

K∑
k=1

λk , β =
∑K
k=1

λk
λ βk , γ =

∑K
k=1

λk
λ γk ,

ρ =

K∑
k=1

ρk , p = min1≤k≤K P
(
Rk

1(0) = rmax
)
.

Delay-driven MaxWeight scheduler

Definition 1: For any time slot [t, t + 1), when there
are Q(t) > 0 files present in the system (at the end of
the last slot), and the corresponding wait time and chan-
nel state vectors are W (t) = (Wi(t), 1 ≤ i ≤ Q(t)) and
R(t) = (Ri(t), 0 ≤ i ≤ Q(t)) respectively, then schedule for
service a file i∗ (W (t), R(t)) that satisfies,

i∗ (W (t), R(t)) ∈ arg max
1≤i≤Q(t)

Wi(t)Ri(t) , (1)

with ties broken in favor of the smallest index i achieving the
max in above.

Remark 2: Under MaxWeight, the process Q(·) evolves as
follows,

Q(t+ 1) =
(
Q(t)− 11{L∗(t)≤R∗(t)}

)+
+ A(t) .

where L∗(·) ≡ Li∗(W (·),R(·))(·) and
R∗(·) ≡ Ri∗(W (·),R(·))(·). For later use, let us also define
T∗(·) ≡ Ti∗(W (·),R(·))(·) and W∗(·) ≡Wi∗(W (·),R(·))(·).

Remark 3: At any t ∈ Z+, the state, S(t), of the system
given by,

S(t) ≡
(
Q(t); W (t) = (Wi(t), 1 ≤ i ≤ Q(t)) ;

L(t) = (Li(t), 1 ≤ i ≤ Q(t))
)
,

forms a discrete time homogeneous Markov chain under the
MaxWeight scheduler.

III. MAIN RESULT

The main result of this paper is given below and in the rest
of the paper we will sketch the proof of this result.

Theorem 1: Delay-driven MaxWeight scheduler is through-
put optimal, i.e., for any ρ < 1 in the system described in
Section II, the delay-driven MaxWeight scheduler stabilizes
the system.

We will need the following quantities all
of which are derived from a system sample-
path2 X ≡

(
S(t), A(t), R(t), t ∈ Z

)
.

• Let U(t) ≡ (Ui(t), 1 ≤ i ≤ Q(t)), where
Ui(t) ≡

⌈
Li(t)
rmax

⌉
, i.e., the number of slots it will take to

serve the ith present file if served at rate rmax bits/slots.

2Even though (A(t), t ≥ 0) can be inferred from the other components of
X , for clarity we explicitly include (A(t), t ≥ 0) in definition of X .



Fig. 1. System model.

• Let Ū(t) ≡
∑Q(t)
i=1 Ui(t), i.e., the total unfinished work

present in the system (assuming the service rate is always
rmax) at the end of slot [t− 1, t).

• Let L̄(t) ≡
∑Q(t)
i=1 Li(t), i.e., the total number of bits

present at the end of slot [t− 1, t).

In the sequel, we will extend the domain of all discrete
time processes and functions to continuous time: a function
originally defined on integer times has the same value at any
real t that it takes at btc. Also, we will extend the definition
of Wi(t) to all i ∈ {1, 2, . . .} by letting Wi(t) = 0 for
i ∈ {Q(t) + 1, Q(t) + 2, · · · }.

For each n ∈ Z+, consider a independent and stochastically
equivalent system

X (n) ≡
(
S(n)(0); S(n)(t+ 1),A(n)(t),R(n)(t), t ≥ 0

)
under the delay-driven MaxWeight scheduler and where the
initial state S(n)(0) is non-random and satisfies,

||S(n)(0)|| ≡ Ū (n)(0) +W
(n)
1 (0) = n , (2)

i.e., the total work in terms of number of slots it will take to
serve the files present at t = 0 if served at rate rmax per slot,
plus the wait time of the oldest file in the system.

The following proposition is due to [12], and will be used
in proving Theorem 1.

Proposition 1: Suppose there exists an ε > 0 and an integer
t1 > 0 such that the following holds for any sequence of
systems

{
X (n), n = 1, 2, . . .

}
satisfying (2),

lim sup
n→∞

E
(

1

n
||S(n)(nt1)||

)
≤ 1− ε , (3)

then the Markov chain
(
S(t), t ∈ Z

)
is stable.

See [7] for a use of this proposition to show throughput
optimality of queue- and delay-driven MaxWeight in the case
of a system with a fixed number of flows each having a
corresponding stationary exogenous packet arrival process.

We will now define the fluid-scaled functions and processes
obtained from the sequence {X (n), n = 1, 2, . . .}; these fluid-
scaled functions and their limits will be used in showing the
conditions required for Proposition 1, i.e., the existence of ε
and t1 as in (3).

1) Fluid limit of the deterministic initial state: For
t ∈ (−∞, 0], let F (n)(t) denote the number of files present at
time 0 that had arrived by the end of time slot [btc − 1, btc),
i.e.,

F (n)(t) ≡
Q(n)(0)∑
i=1

11{
T

(n)
i (0)≤t−1

} .
Since W

(n)
1 (0) ≤ n, we have that F (n)(−n) = 0 and

F (n)(0) = Q(n)(t).
Let,

l̄(n)(0) ≡ 1

n
L̄(n)(0) ,

ū(n)(0) ≡ 1

n
Ū (n)(0) ,

q(n)(0) ≡ 1

n
Q(n)(0) ,

and for t ∈ [−1, 0], let,

f (n)(t) ≡ 1

n
F (n)(nt),

and for x ∈ [0,∞), let3,

w(n)
x (0) ≡ 1

n
W

(n)
bnxc+1(0) ,

where w(n)
x (0) is decreasing in x. Since,

0 ≤ q(n)(0) ≤ l̄(n)(0) ≤ rmax
(
ū(n)(0) + w

(n)
0 (0)

)
= rmax,

(4)

3(f (n)(t), − 1 ≤ t ≤ 0) and (w
(n)
x (0), 0 ≤ x ≤ q(n)(0)) are related.

That is, w(n)
x (0) = 1/n− inft(t : f (n)(t) ≥ x+ 1/n).



therefore, along some subsequence of n (for simplicity still
denoted by n), we have,

l̄(n)(0)→l̄(0) , ū(n)(0)→ ū(0) ,

w
(n)
0 (0)→w0(0) , q(n)(0)→ q(0) ,

where ū(0) + w0(0) = 1. With w0(0) and f(0) ≡ q(0) as
above, let

(
wx(0), 0 ≤ x ≤ q(0)

)
and

(
f(t), − 1 ≤ t ≤ 0

)
be weak limits of (w

(n)
x (0), 0 ≤ x ≤ q(0)

)
and

(f (n)(t), − 1 ≤ x ≤ 0
)

respectively along a further subse-
quence of n, i.e.,

w(n)
x (0)→ wx(0) , f (n)(t)→ f(t)

at the points of continuity of w(·)(0) and f(·) respectively. To
summarize, the (partial) initial state of the limiting system is
captured by,(

q(0); w(0) ≡
(
wx(0), 0 ≤ x ≤ q(0)

)
;(

f(t), − 1 ≤ t ≤ 0
)
; ū(0) + w0(0) = 1

)
.

2) Deterministic fluid limit of the random state for t ≥ 0:
We will also need the following fluid-scaled processes, all
defined for t ∈ R+.

Let F (n)(t),F
(n)
l (t), and F

(n)
u (t) respectively be the total

files, the total bits, and the total work arriving up to the end
of time slot [btc − 1, [btc), i.e.,

F (n)(t) ≡ Q(n)(0) +

t−1∑
k=0

A(n)(k) ,

F
(n)
l (t) ≡ L̄(n)(0) +

t−1∑
k=0

A(k)∑
m=1

B(n)
m (k) ,

F (n)
u (t) ≡ Ū (n)(0) +

t−1∑
k=0

A(k)∑
m=1

⌈
B

(n)
m (k)

rmax

⌉
.

Then, along a further subsequence of n, we have the following
uniform over compact sets (u.o.c) convergences (see Theorem
4.1 of [13], Lemma 1 of [7]),(

f (n)(t) ≡ 1

n
F (n)(nt), t ≥ 0

)
→(

f(t) ≡ q(0) + λt, t ≥ 0
)
,(

f
(n)
l (t) ≡ 1

n
F

(n)
l (nt), t ≥ 0

)
→(

fl(t) ≡ l̄(0) + λβt, t ≥ 0
)
,(

f (n)
u (t) ≡ 1

n
F (n)
u (nt), t ≥ 0

)
→(

fu(t) ≡ ū(0) + ρt, t ≥ 0
)
.

(5)

Let D(n)(τ, t),D
(n)
l (τ, t), and D

(n)
u (τ, t) respectively be

the total files, the total bits, and the total work which
(i) arrived before the end of time slot [bτc − 1, bτc), and

(ii) departed/completed service by the end of time slot
[btc − 1, btc).

These can be mathematically defined as follows: for
t ≥ 0, t ≥ τ > −∞,

D(n)(τ, t) ≡
t−1∑
k=0

11{
L

(n)
∗ (k)≤R(n)

∗ (k), T
(n)
∗ (k)≤τ−1

} ,
D

(n)
l (τ, t) ≡

t−1∑
k=0

min
(
L

(n)
∗ (k),R

(n)
∗ (k)

)
11{

T
(n)
∗ (k)≤τ−1

} ,
D(n)
u (τ, t) ≡

t−1∑
k=0

(⌈
L

(n)
∗ (k)

rmax

⌉
−

⌈
L

(n)
∗ (k)−R

(n)
∗ (k)

rmax

⌉)
×

11{
T

(n)
∗ (k)≤τ−1

} .
For example, D(n)(t, t) is simply the total number of
files which have completed service by the end of slot
[btc − 1, btc). Moreover, D(n)(τ, t) is increasing in τ and
t with D(n)(·, 0) = 0, and for any (τ1, t1) ≤ (τ2, t2), we
have that D(n)(τ2, t2) − D(n)(τ1, t1) ≤ max

(
t2 − t1 +

1,F (n)(τ2) − F (n)(τ1)
)
. Similar bounds hold for D

(n)
l (τ, t)

and D
(n)
u (τ, t). Then, along a further subsequence of n, we

have the following u.o.c. convergences to Lipschitz continuous
(and hence differentiable a.e.) limiting functions,

(
d(n)(τ, t) =

1

n
D(n)(nτ, nt), t ≥ τ ≥ 0

)
→(

d(τ, t), t ≥ τ ≥ 0
)
,(

d
(n)
l (τ, t) ≡ 1

n
D

(n)
l (nτ, nt), t ≥ τ ≥ 0

)
→(

dl(τ, t), t ≥ τ ≥ 0
)
,(

d(n)
u (τ, t) ≡ 1

n
D(n)
u (nτ, nt), t ≥ τ ≥ 0

)
→(

du(τ, t), t ≥ τ ≥ 0
)
.

The points (τ, t) where the derivatives of the limiting functions
exist are called regular. Then, for all regular t ≥ τ ≥ 0, we
have that 0 ≤ ∂d(τ,t)

∂τ ≤ λ and 0 ≤ ∂d(τ,t)
∂t ≤ 1. Similar bounds

hold for the derivatives of dl(τ, t) and du(τ, t).
Let Q(n)(τ, t) denote the number of files which arrived

before the end of slot [τ − 1, τ) but are still present at the
end of slot [t − 1, t); so, for example, Q(n)(t) = Q(n)(t, t).
Then using the above defined processes, we have that,

Q(n)(τ, t) = F (n)(τ)−D(n)(τ, t) ,

Q(n)(t) = Q(n)(t, t) = F (n)(t)−D(n)(t, t) ,

L̄(n)(t) = F
(n)
l (t)−D

(n)
l (t, t) ,

Ū (n)(t) = F (n)
u (t)−D(n)

u (t, t) ,

W
(n)
i (t) = btc+ 1− inf

τ

(
τ : Q(n)(τ, t) ≥ i

)
,

i ∈ {1, · · · ,Q(n)(t)},

and the following u.o.c. convergences to Lipschitz continuous



limiting functions,(
q(n)(τ, t) ≡ 1

n
Q(n)(nτ, nt), t ≥ τ ≥ 0

)
→(

q(τ, t) ≡ f(τ)− d(τ, t), t ≥ τ ≥ 0
)
,(

q(n)(t) ≡ 1

n
Q(n)(nt), t ≥ 0

)
→(

q(t) ≡ f(t)− d(t, t), t ≥ 0
)
,(

l̄(n)(t) ≡ 1

n
L̄(n)(nt), t ≥ 0

)
→(

l̄(t) ≡ fl(t)− dl(t, t), t ≥ 0
)
,(

ū(n)(t) ≡ 1

n
Ū (n)(nt), t ≥ 0

)
→(

ū(t) ≡ fu(t)− du(t, t), t ≥ 0
)
,

and the following weak convergence,(
w(n)
x (t) ≡ 1

n
W

(n)
bnxc+1(nt), x ≥ 0, t ≥ 0

)
→(

wx(t), x ≥ 0, t ≥ 0
)
,

where, if q(t) > 0 = q(0, t), then w0(t) is given by the right-
limit of wx(t), i.e.,

w0(t) = lim
x↓0

wx(t) = lim
x↓0

(
t− inf

τ
(τ : q(τ, t) ≥ x)

)
,

= t− sup
τ

(τ : q(τ, t) = 0) .

3) Dynamics and derivatives of fluid limit for t ≥ 0:
The limiting point

(
q, l̄, ū, w, f, fl, fu, d, dl, du

)
of the scaled

version of sequence {X (n), n = 1, 2, . . .} obtained above is
not necessarily unique. In particular, the limit point depends
on the sequence of initial states {S(n)(0)} and the conver-
gent subsequence chosen. However, the following lemmas
hold for all limit points of the scaled version of sequence
{X (n), n = 1, 2, . . .}. See Appendix for proofs.

Lemma 1: Consider any set of limiting functions derived
from {X (n), n = 1, 2, . . .}. For any regular t ≥ τ ≥ 0, if
fl(τ)− dl(τ, t) > 0, then,

∂dl(τ, t)

∂t
≥ 1, (6)

and,
∂dl(t, t)

∂t
=
∂dl(τ, t)

∂t
. (7)

Remark 4: The condition fl(τ) − dl(τ, t) > 0 means that
there is a strictly positive amount of bit fluid with wait time
at least t− τ . Then (6) ensures that this fluid will eventually
get served, whereas, (7) ensures no service is given to any
newer fluid while the older one remains in the system. This
lemma however does not establish that the rate at which the
fluid is being served is higher than the rate at which the fluid
is entering the system; that is addressed later in Lemma 2.

Corollary 1: By (4) and (6) in Lemma 1, for all
t > T0 ≡ rmax, we have,

w0(t) < t ,

i.e., all the fluid initially present in the system (recall l̄(0)) gets
served by time T0. Moreover, by (7) in Lemma 1, the fluid
is served in a FCFS (first-come-first-serve) manner, therefore,
for all t > T0, we have that,

wx(t) =
q(t)− x

λ
, x ∈ [0, q(t)] ; (8)

l̄(t) = βq(t) ; (9)
ū(t) = γq(t) . (10)

Remark 5: To see (8), pick an x ∈ (0, q(t)) and note that
τ ≡ t − wx(t) ≥ t − w0(t) > 0 and q(τ, t) ≥ x > 0. Then
f(t) − f(τ) = λwx(t). By Lemma 1, this λwx(t) amount
of file fluid that has entered the system since τ must still be
queued behind x. That is, q(t) − x = λwx(t). Equations (9)
and (10) follow similarly.

Lemma 2: Consider any set of limiting functions derived
from {X (n), n = 1, 2, . . .}. For any regular t > T0, if
q(t) > 0, then,

∂d(t, t)

∂t
= γ−1 ,

∂du(t, t)

∂t
= 1 ,

and hence,
q′(t) = λ− γ−1 < 0 ,

ū′(t) = ρ− 1 < 0 ,

w′0(t) =
q′(t)

λ
< 0 .

(11)

Corollary 2: There exits a finite T1 (independent of the
set {X (n), n = 1, 2, . . .}), such that for any set of limiting
functions and for all t > T1, we have that

ū(t) + w0(t) = 0 .

4) Using Proposition 1 to conclude the proof of Theorem
1: Corollary 2 implies that,

lim
n→∞

1

n
||S(n)(nT1)|| = 0 a.s. (12)

Moreover, the sequence of random variables{
1
n ||S

(n)(nT1)||, n = 1, 2, . . .
}

is uniformly integrable
since (see [14], p. 351),

1

n
||S(n)(nT1)|| ≤ 1 + f (n)

u (T1) + T1
a.s.−→

E
(

1 + f (n)
u (T1) + T1

)
= 1 + (ρ+ 1)T1 < ∞ .

Then, the almost sure convergence in (12) along with uniform
integrability implies the following convergence in the mean,

lim
n→∞

E
(

1

n
||S(n)(nT1)||

)
= 0 ,

thus completing the proof of throughput optimality of the
delay-driven MaxWeight.



IV. CONCLUSION AND EXTENSIONS

An interesting extension of the system model is to allow that
a file may arrive gradually over time instead of all at once (i.e.,
similar to the case (ii) of [5]). Assuming the distribution of
the time interval over which the first and the last bit of a file
arrives has a light tail, the extension of the current result seems
possible without much effort: the fluid limits of the arrival
process (e.g., the work arrival process fu) is indistinguishable
for the two cases. Similarly, the assumption that channel Ri(t)
be i.i.d. over time can be relaxed to, e.g., Ri(t) forming
a Markov chain in the set {0, · · · , rmax} with a unique
stationary distribution satisfying p = P(Ri(·) = rmax) > 0,
and Ri(·) being drawn from the stationary distribution upon
the arrival of a file. Other interesting extensions that seem
possible, however, require little more effort are as follows:
allowing for different classes to have a possibly different rmax

bits/slot, i.e., the maximum rate (with non-zero probability)
supported by the channel; and generalizing the scheduler to
weighted-delay-driven MaxWeight, where the wait time of
each file is scaled by a fixed, class-dependant constant (see
(1)).
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APPENDIX

Proof of Lemma 1: Fix a t ≥ τ ≥ 0 such that
fl(τ)− dl(τ, t) > 0. Then by the assumption of bounded file
size, we have q(τ, t) > 0. Since q(τ, ·) is Lipschitz continuous,
there exits a δ > 0 and 0 ≤ t1 < t2 such that t ∈ [t1, t2]
and for all t̂ ∈ [t1, t2] we have q(τ, t̂) > 2δ. By uniform
convergence of q(n)(τ, ·)→ q(τ, ·) over [t1, t2], for all large n
we have that over [t1, t2], q(n)(τ, ·) > δ and w

(n)
x (·) ≥ (τ−·)

for x ∈ [0, δ]. Finally,

t2 − t1 +
1

n

≥ 1

n

nt2−1∑
k=nt1

11{
i∗

(
W (n)(k),R(n)(k)

)
≤ nδ

}, (13)

≥ 1

n

nt2−1∑
k=nt1

11{
max1≤i≤nδW

(n)
i (k)R

(n)
i (k)≥(nτ−k)rmax

},
≥ 1

n

nt2−1∑
k=nt1

11{
max1≤i≤nδR

(n)
i (k)=rmax

} a.s.−→ t2 − t1.

That is, lim infn→∞ d
(n)
l (τ, t2)− d

(n)
l (τ, t1) ≥ t2 − t1 a.s.

and limn→∞
(
d
(n)
l (t2, t2) − d

(n)
l (t1, t1)

)
−
(
d
(n)
l (τ, t2) −

d
(n)
l (τ, t1)

)
= 0 a.s.

Proof of Lemma 2: Fix a t > T0 such that q(t) > 0. Since
w

(n)
(·) (T0 + ·) converges u.o.c. to Lipschitz continuous w(·)(·)

(see (8)), we can pick a q(t) > δ > 0 and T0 ≤ t1 < t2 such
that t ∈ [t1, t2] and for all large n uniformly over [t1, t2],
we have rmaxw

(n)
δ (·) ≥ (rmax − 1)w

(n)
0 (·). This choice of

δ implies that for any t̂ ∈ {bnt1c, · · · , bnt2c − 1}, if a
file in set {1, · · · , bnδc} sees a channel state of rmax, then
R∗(t̂) = rmax. Rest of the proof proceeds similar to that of
Lemma 1, except that we will strengthen the event associated
with the Indicator function in (13). We have that,

t2 − t1 +
1

n

≥ 1

n

nt2−1∑
k=nt1

11{
R

(n)
∗ (k)=rmax

},
≥ 1

n

nt2−1∑
k=nt1

11{
i∗
(
W (n)(k),R(n)(k)

)
≤ nδ, R

(n)
∗ (k)=rmax

},
=

1

n

nt2−1∑
k=nt1

11{
max1≤i≤nδR

(n)
i (k)=rmax

},
≥ 1

n

nt2−1∑
k=nt1

11{
max1≤i≤nδR

(n)
i (k)≥rmax

} a.s.−→ t2 − t1.

Then, along with Corollary 1, it follows that
limn→∞ d

(n)
u (t2, t2) − d

(n)
u (t1, t1) = t2 − t1 a.s. and

limn→∞ d(n)(t2, t2)− d(n)(t1, t1) = γ−1(t2 − t1) a.s.


